- POJ 2253 - Frogger
- Time: 1000MS
- Memory: 65536K
- 难度: 初级
- 分类: 最短路径算法
问题描述
给出两只青蛙的坐标A、B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的。显然从A到B存在至少一条的通路,每一条通路的元素都是这条通路中前后两个点的距离,这些距离中又有一个最大距离。
现在要求求出所有通路的最大距离,并把这些最大距离作比较,把最小的一个最大距离作为青蛙的最小跳远距离。
解题思路
用Floyd算法求出两两最短路,再求出从每个点开始的最长路,最后从这n个最长路中求出最小的那个即为所求。
注意精度。
AC 源码
//Memory Time
//584K 63MS
#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
class coordinate
{
public:
double x,y;
}point[201];
double path[201][201]; //两点间的权值
int main(void)
{
int i,j,k;
int cases=1;
while(cases)
{
/*Read in*/
int n; //numbers of stones;
cin>>n;
if(!n)break;
for(i=1;i<=n;i++)
cin>>point[i].x>>point[i].y;
/*Compute the weights of any two points*/
for(i=1;i<=n-1;i++)
for(j=i+1;j<=n;j++)
{
double x2=point[i].x-point[j].x;
double y2=point[i].y-point[j].y;
path[i][j]=path[j][i]=sqrt(x2*x2+y2*y2); //双向性
}
/*Floyd Algorithm*/
for(k=1;k<=n;k++) //k点是第3点
for(i=1;i<=n-1;i++) //主要针对由i到j的松弛,最终任意两点间的权值都会被分别松弛为最大跳的最小(但每个两点的最小不一定相同)
for(j=i+1;j<=n;j++)
if(path[i][k]<path[i][j] && path[k][j]<path[i][j]) //当边ik,kj的权值都小于ij时,则走i->k->j路线,否则走i->j路线
if(path[i][k]<path[k][j]) //当走i->k->j路线时,选择max{ik,kj},只有选择最大跳才能保证连通
path[i][j]=path[j][i]=path[k][j];
else
path[i][j]=path[j][i]=path[i][k];
cout<<"Scenario #"<<cases++<<endl;
cout<<fixed<<setprecision(3)<<"Frog Distance = "<<path[1][2]<<endl;
//fixed用固定的小数点位数来显示浮点数(包括小数位全为0)
//setprecision(3)设置小数位数为3
cout<<endl;
}
return 0;
}