加载中...

POJ 1942 - Paths on a Grid


问题描述

给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有多少种走法,每步只能向上或者向右走。

解题思路

非常水的中学数学题,用组合做。

简单建立一个数学模型

只要给定了长m和高n,那么要从左下角走到右上角,不管怎么走,一定要往右走m次,往上走n次。

例如给定 m=5, n=4

  • 那么可以这样走: 上上上上上右右右右
  • 又可以这样走: 上右上右上右上右上

等等。。。关键是“上”和“右”的先后问题,就是组合问题了。

那么数学模型就是

从n+m个位置,选择n个位放“上” (那么剩下m个位一定是“右”)


处理阶乘有三种算法

  • (1)传统意义上的直接递归,n的规模最多到20+,太小了,在本题不适用,而且非常慢
  • (2)稍快一点的算法,就是利用log()化乘为加,n的规模虽然扩展到1000+,但是由于要用三重循环,一旦n规模变得更大,耗时就会非常之严重,时间复杂度达到 O(n*m*(n-m)),本题规定了n,m用unsigned int32类型,就是说n,m的规模达到了21E以上,铁定TLE的。而且就算抛开时间不算,还存在一个致命的问题,就是精度损失随着n的增加会变得非常严重。
    因为n有多大,就要进行n次对数运算,n规模一旦过大,就会丢失得非常严重了。所以这种方法是绝对不可取的,因为中途的精度丢失不是简单的四舍五入可以挽回的。
  • (3)拆分阶乘,逐项相除,再乘以前面所有项之积。这种方法用一个循环就OK了,时间复杂度只有 O(n-m),非常可观。

下面我根据程序详细说说算法(3)

double cnm=1.0;
while(b>0)
    cnm*=(double)(a- -)/(double)(b- -);

这是我写的函数原型,计算的是 aCb

这种算法巧妙地利用了分子分母的关系,而不是把公示中的3个阶乘单独处理。

例如当 a=5, b=2 时:

由于用了 double去计算组合数,那么最后要转化为 无符号整型 时就要处理精度问题,有两种方法四舍五入+强制类型转换 或者 setprecision() 函数

详细看我的两个程序。

AC 源码

解题方法一:四舍五入+强制类型转换

/*强制类型转换输出*/

//Memory Time 
//220K   0MS 

#include<iostream>
#include<math.h>
using namespace std;

/*Compute (n+m)C min{n,m}*/

unsigned comp(unsigned n,unsigned m)
{
    unsigned a=m+n;
    unsigned b=(m<n?m:n);
    double cnm=1.0;
    while(b>0)
        cnm*=(double)(a--)/(double)(b--);

    cnm+=0.5;      //double转unsigned会强制截断小数,必须先四舍五入
    return (unsigned)cnm;
}

int main(void)
{
    unsigned m,n;
    while(true)
    {
        cin>>m>>n;
        if(!m && !n)//承认这题的猥琐吧!竟然有其中一边为0的矩阵,一定要&&,用||会WA
            break;

        cout<<comp(n,m)<<endl;
    }
    return 0;
}

解题方法二:setprecision()函数+自定义精度输出

/*自定义精度输出*/

//Memory Time 
//220K   0MS 

#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;

/*Compute (n+m)C min{n,m}*/

double comp(unsigned n,unsigned m)
{
    unsigned a=m+n;
    unsigned b=(m<n?m:n);
    double cnm=1.0;
    while(b>0)
        cnm*=(double)(a--)/(double)(b--);

    return cnm;
}

int main(void)
{
    unsigned m,n;
    while(true)
    {
        cin>>m>>n;
        if(!m && !n)
            break;

        cout<<fixed<<setprecision(0)<<comp(n,m)<<endl;  
        //fixed是为了固定小数位数
        //setprecision()函数是会自动四舍五入的,所以不用像强制类型转换那样预先+0.5
    }
    return 0;
}

相关资料


文章作者: EXP
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 EXP !
  目录