Constructions for the Solution of the m Queens Problem

E. J. Hoffman; J. C. Loessi; R. C. Moore
Mathematics Magazine, Vol. 42, No. 2 (Mar., 1969), 66-72.

Stable URL:
http://links jstor.org/sici?sici=0025-570X%28196903%2942%3 A2%3C66%3 ACFTSOT%3E2.0.CO%3B2-9

Mathematics Magazine is currently published by Mathematical Association of America.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Thu Dec 15 18:26:34 2005



66 MATHEMATICS MAGAZINE [Mar.—-Apr.

Y

Fic. 11

Returning to polygons we see that if any five of the vertices of a polygon
determine a nondegenerate conic, and lie on one branch of that conic, then the
set of segment-generated points generated by the vertices is dense in a specifiable
region of the plane. Also, the set of intersect-generated points is dense in the
plane. Thus our doodling conjecture is decided.

CONSTRUCTIONS FOR THE SOLUTION OF THE m
QUEENS PROBLEM

E. J. HOFFMAN, J. C. LOESSI, and R. C. MOORE,
The Johns Hopkins University Applied Physics Laboratory

The problem of the m queens, originally introduced by Gauss (with m =8),
may be stated as follows: is it possible to place m queens on an m Xm chess-
board so that no one queen can be taken by any other? The problem is an inter-
esting one because it reduces to that of finding a maximum internally stable set,
S, of a symmetric graph, G= (X, I'), the vertices of which correspond to the #:?
square elements of an m X matrix, where x’ is an element of I'x only if x and x’
are on the same row or column or diagonal, and where I'SN\S is the null set.
(See [1].) Obviously, | S I cannot be greater than m.

By treating the chessboard as an m Xm matrix of square elements, we can
identify any square by an ordered pair, (¢, j), where ¢ and j are the row and
column numbers of the square, respectively. We define a major diagonal of the
matrix to be a set of elements (7, ) such that m —j+7=CONSTANT where the
CONSTANT is the number of the diagonal. The major diagonal numbered #z
will be called the principal diagonal. Clearly, all points on the principal diagonal
have the property 7=j.

We further define a minor diagonal of the matrix to be a set of elements (z, 7)
such that 4+5—1=CONSTANT where the CONSTANT is the number of the
diagonal.
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The m queens problem can now be stated as follows: place m queens on an
m Xm matrix of square elements so that, for the elements occupied,

a) the row numbers are unique,

b) the column numbers are unique,

¢) the major diagonal numbers are unique, and

d) the minor diagonal numbers are unique.

The constructions which follow are sufficient to solve the m queens problem;
the theorems delineate which of the constructions are appropriate for a given .
It will be shown that the solutions apply for all m = 4.

Construction A. Form an m X m matrix of square elements with m =2#, where
n=2,3,4,5, - -.

i) Place queens on the elements (%, jx), where it =% and ji, =2k, k=1, 2,
3, -, m

ii) Place queens on the elements (4, j;), where 4;=27+1—/ and 7;=2n+1
-2, 1=1,2,3,---,mn.

1
e

Fi1G. 1. (a) Solution of 12X 12 matrix using Construction A. (b) Solution of 14X 14 matrix
using Construction B and extension to 15X 15 matrix using Construction C.

Construction B. Form an m Xm matrix of square elements with # =2#, where
n=2,3,4,5+--.
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i) Place queens on the elements (i, ji), where 4, =k and
gr=14+ {26 —1) +n—1] modulom}, %k=1,2,3,---,n.

ii) Place queens on the elements (¢;, ji), where 7;=2n-+1—1 and j;
=2n—{[2(0—1)+n—1] modulo m}, I1=1,2,3, - - -, n.

Construction C. To an m Xm matrix of square elements add an (m-+1)th row
and an (m-+1)th column. Place a queen on the element (m+1, m-+1).
Figure 1 shows typical examples of Constructions A, B, and C.

THEOREM 1. A solution of the m queens problem is obtained when Construction
A is applied to an m Xm matrix, m=2n, where n is an integer greater than zero
such that n#3\+1,A=0,1,2, - - - .

Proof. Part i) of Construction A places queens on the elements (&, 2k) while
part ii) places queens on the elements (2n-+4+1—1I, 2n+1-21), 1=(k, })=n.
Clearly, part i) places one queen on an element of each of the first #» rows and
also on each even-numbered column. Part ii) places one queen on an element of
each of the second # rows and also on each odd-numbered column. Therefore,
each row and column has one and only one queen.

The major diagonals which are used by part i) are numbered 2n—2k-k
=2n—=k, 1 =k =n. Clearly, these are unique. The major diagonals used by part
ii) are numbered 27— (2n+1—20)4+2n+1—1=2n+1, 1 =]1=<n. Clearly, these
are also unique.

Assume a queen from part i) occupies the same major diagonal as a queen
from part ii). Then 22—k =2n-+1 and —k=I[ which is impossible, so we are
forced to abandon the hypothesis that two queens occupy the same major
diagonal.

The minor diagonals which are used by part i) are numbered k+2k—1
=3k—1, 1 =k =n. Clearly, these are unique. The minor diagonals used by part
ii) are numbered 2n+1—I142n+1—2l—1=4n—3l+41, 1 =/=n. Clearly, these
are also unique.

Assume a queen from part i) occupies the same minor diagonal as a queen
from partii) so that 34 —1=4n—3[-+1 and 4n =3(k+1) —2. Since # is an integer,
k-1 must be even, and we can write

k
M=3ij>—L
2

Now we see that (k+1)/2 must be odd, say, (k+1)/2=2\4+1,A=0,1,2, - - -
and we have 22=3(2N+1)—1=6\+2 so that u=3\+1,A=0, 1, 2, - - -, which
are the values excluded by the theorem. Hence we are forced to abandon the
hypothesis that two queens occupy the same minor diagonal, and the theorem
is established.

THEOREM 2. A solution of the m queens problem is obtained when Construction
B is applied to an m Xm matrix, m =2n, where n is an integer greater than unity
such thatn=3\,A=1,2,3, - - ..
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Proof. Part i) of Construction B places queens on the elements (1, #),

2, n+2), (3, n+4), - - -, (r, s) where
n+ 2
)y 1 even
2n, 7% even
r = and s = { } ,
n+1 2n — 1, n odd
» n odd
and on the elements (*/, ), (#'+1, s'+2), - - -, (n, n—2) where

2, n even
r'=r4+1 and ¢ = .

1, » odd

Part ii) of Construction B places queens on the elements (2n, n-+1), 2n—1,

n—1), 2u—2,n-3), - - -, (p, q) where
3n .
— meven
2 1, n even
g frrol
3n+1 2, n odd
» n odd
and on the elements (p’, ¢'), (»'—1, ¢’ —2), (p'—2, ¢ —4), - - -, (n+1, n+3)
where
/ 1 4 o {Zn -1, n even}
=p—1 an = .
? 1 2n, 7 odd

Clearly, part i) places one queen on an element of each of the first # rows, and
also on each even-numbered column (if # is even) or each odd-numbered column
(if % is odd). Part ii) places one queen on an element of each of the second # rows
and also on each odd-numbered column (if # is even) or each even-numbered
column (if # is odd). Therefore, each row and column has one and only one
queen.

The major diagonals which are used by parti) are numbered 2z — [2(k —1) +#]
+k=n—k+2 for 1=5k=r, and 2n—[2(4' —1)—n]+k =3n—k'+2 for 7
=k’=<n. Clearly, since the largest of the first set is #—1+4+2=%-+1 and the
smallest of the second set is 3n—n-+2=2(n-+1), these are unique. The major
diagonals used by part ii) are numbered

2w —{2m+1-20-0D+aul}+2m+1—-01=3n+1-2
1<I<2m+1—p,
and
m— {2+ 1 =20 =) —ul}+ 20 +1 -V =n+1V -2
m+1—p =V = n

Clearly, since the smallest of the first set is 3n+1—2=3n—1 and the largest
of the second set is #+#—2=2(n—1), these are unique.
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Assume a queen from part i) occupies the same major diagonal as a queen
from part ii). We would then have

WVDun—k+2=3m+1-2, B)3n—F+2=3n+1—2,0r
Qn—-k+2=n+1 -2, @) 3nm—FKF+2=n+0 -2
Equation (1) implies 2+!=4—2#, but since the smallest £/ can be is 2, this

can never happen, since # is greater than unity. Equation (2) implies k41’ =4,
and the smallest £+1" will ever be is

n-+6

)y ! eVEn

)%Ode’

Equation (3) implies k’41=4, and the smallest &’ will ever be is
n -+ 6

) 1 even

ln+s
n » n odd

Equations (2) and (3) can be satisfied, therefore, only if # =2 or z=3. The value
n=3 is excluded in the statement of the theorem. For # =2 we have r=2 and
2n+1—p=n so that ¥ =r+1>n and 2n4+1—p'=2n+2—p>n, and neither
k' nor I’ can exist. Equation (4) implies &'+’ =2n-4, but the largest &'+ will
ever be is 2%, so we are forced to abandon the hypothesis that two queens occupy
the same major diagonal.

The minor diagonals which are used by part i) are numbered 242(k—1)
+n—1=n+3k—3 for 1=k=r, and k'+2(k' —1)—n—1=—n-+3k" -3 for
7' £k’ =n. The minor diagonals used by part ii) are numbered 2n+1—1+2n+1
—2(0—1)—n—1=3n—3l4+3for 1=I=2n+1—p,and 2n+1—0U+2n+1—-2("'—1)
+n—1=51—30'+3 for 2n+1—p'<V'=Zn.

Assume two queens occupy the same minor diagonal. We would then have

B)n+3k—3=—n+3F -3, 8) —n-+ 3k —3=23n—31+ 3,
6) n+3k—3=3n—3+3, 9) —n—+3F —3=58—3'+3,o0r
(7)) n+3k—3=>5n—30'4+3, (10) 32 — 31+ 3 =52 — 3 4+ 3.

Equation (5) implies 2n=3(k'—k), so k’—k must be even, say k' —Fk=2],
A=1,2,3,:--.Then 2n=3(2\), n=23\, which are the values excluded by the
theorem. Similarly, equation (10) resultsin 2n =3 —1), I’ —1=2\, n=3\.

Equation (6) implies 2z =3(k-+1—2), so k+1—2 must be even, say k+I—2
=2\A=1,2,3, - - - . Then 2 =3(2\), »n =3\, which are the values excluded by
the theorem.

Equation (7) implies 4n=3(k41'—2), so k+1'—2 must be doubly even, say
E4+1l'—2=4\, N=1, 2, 3, - - -. Then 4n=3(4\), =23\, which are the values
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excluded by the theorem. Similarly, equation (8) results in 4n=3(k'+1—2),
B +1—2=4\ n=23\.
Finally, equation (9) implies 6n=3(k'+1 —2), 2n="Fk’41'—2. But the largest
k' 41 —2 will ever be is 2n—2, so we are forced to abandon the hypothesis that
two queens occupy the same minor diagonal, and the theorem is established.
Before examining the validity of Construction C, it will be necessary to prove
the following two lemmas:

LemuMA 1. Construction A places no queens on the principal diagonal.

Proof. The principal diagonal was defined as the major diagonal for which
1=j. Suppose a queen from Construction A occupies the principal diagonal. Then
either

1) k= 2k forsome 1 £ k<%, or
@ 2m+1—-1l=2n+1-2 for some 1 =17 =< n.

Equation (1) implies £#=0, which contradicts the bound 2=1. Likewise,
equation (2) implies /=0, contradicting the bound /=1. We therefore abandon
the hypothesis that a queen exists on the principal diagonal, and the lemma is
established.

LeMMmA 2. Construction B places no queens on the principal diagonal.

Proof. The reasoning here is similar to that in Lemma 1. Suppose a queen
from part (i) of Construction B occupies the principal diagonal. Then either

M 2k—-1)+n==t forsome 1 =k <7, or

(2) 2(’ = 1) —n=F  forsomer =k = n.

Equation (1) implies k=2—#. But #>1, implying k<0, which contradicts
the bound k=1. Equation (2) implies k’ =#%-+2, contradicting the bound %’ <#.
Thus no queen from part (i) can occupy the principal diagonal. Suppose a queen
from part (ii) occupies the principal diagonal. Then either

B 2n+1—-[20—-1D+n]=2n+1—1 forsomel £I=<2n+1—p,or
4 2n+1—[20 —1) —n]=2n+1—1I' forsome2n+1—p' <l <n.

Equation (3) implies /=2—n. But > 1, implying /<0, which contradicts
the bound /= 1. Equation (4) implies ’=#n-+2, contradicting the bound /' <.
Thus no queen from part (ii) can occupy the principal diagonal, and the lemma
is established.

THEOREM 3. A4 solution of the m queens problem for an (m+-1) X (m-+1) matrix
is obtained when Construction C is applied to an m Xm matrix which has previously
been solved by Construction A or Construction B.

Proof. By creating a new (m—1)th row and (m-+1)th column and placing a
queen at (m—+1, m+1), Construction C obviously preserves unique row and
column numbers. In addition, it creates a new minor diagonal containing only
the element (m-+1, m-+1), thus preserving unique minor diagonal numbers.
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The principal diagonal of the (m—41) X (m+1) matrix is, however, an exten-
sion of the principal diagonal of the m Xm matrix. But from Lemmas 1 and 2
we know that this diagonal must have been empty. Hence, unique major diago-
nal numbers are preserved and the theorem is established.

Each of the three constructions contained an exclusion for certain values
of m. It remains only to prove

THEOREM 4. The m queens problem is solved for all m =4 by either Construction
A, B, or C.

Proof. Construction A applies to even m except for m=2(3\+1),A=0,1, 2,

-, or
1) m = 64 — 4 A=1,2,3,---.
Construction B applies to even m except for m =2(3\p)
(2a) m=6\g Ap=1,2,3 -,
and
(2b) m = 2.

The special case, equation (2b), results from the exclusion of #=1 in the
statement of Theorem 2.

Finally, Construction C applies to all odd m for which #m —1 can be solved by
either A or B.

Let M’ be the set of integers m’>1 having the property that neither Con-
struction A, B, or C solves the m’ Xm' matrix. Any even member, m/, of M’
must be simultaneously excluded from both A and B, implying either

3) M —4 =m! =2, or
(43') 6AA —4 = Me' = 6)\3
(4b) A4 — 2/3 = A

for some pair of integers A4 and Az. Equation (4) can never be satisfied by inte-
ger N's. Equation (3) is satisfied only at A4 =1, so that m/ =2 is the only even
member of M’.

Any odd member of M’, say m{, must be excluded from Construction C,
implying that the even member m{ —1 is excluded from both A and B. But we
have seen that the only even number excluded from A and B is m, =2, so the
only odd member of M’ is m{ =3. M’ therefore contains only the two integers
2 and 3, and the theorem is established.
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