• 如果您想对本站表示支持,请随手点击一下广告即可~
  • 本站致力于提供原创、优秀的技术文章~
  • 有任何疑问或建议 均可以在站点右侧栏处 通过各种方式联系站长哦~
  • POJ1006 – Biorhythms

    ACM-POJ EXP 265阅读 0评论

    全解题报告索引目录 -> 【北大ACM – POJ试题分类


    大致题意

    这题在POJ上有译文(原文右上角)

    解题思路

    中国剩余定理,本题难点不在编程,而是分析题目并转化为数学公式

    要引入本题解法,先来看一个故事 “韩信点兵”:

    传说西汉大将韩信,由于比较年轻,开始他的部下对他不很佩服。有一次阅兵时,韩信要求士兵分三路纵队,结果末尾多2人,改成五路纵队,结果末尾多3人,再改成七路纵队,结果又余下2人,后来下级军官向他报告共有士兵2395人,韩信立即笑笑说不对(因2395除以3余数是1,不是2),由于已经知道士兵总人数在2300~2400之间,所以韩信根据23,128,233,——,每相邻两数的间隔是105(3、5、7的最小公倍数),便立即说出实际人数应是2333人(因2333=128+20χ105+105,它除以3余2,除以5余3,除以7余2)。这样使下级军官十分敬佩,这就是韩信点兵的故事。


    韩信点兵问题简化:已知 n%3=2, n%5=3, n%7=2, 求n

    再看我们这道题,读入p,e,i,d 4个整数

    已知(n+d)%23=p; (n+d)%28=e; (n+d)%33=i ,求n 。

    两道题是一样的。但是韩信当时是如何计算出结果的?

    韩信用的就是“中国剩余定理”,《孙子算经》中早有计算方法,大家可以查阅相关资料。

    “韩信点兵”问题计算如下:

    因为n%3=2, n%5=3, n%7=2 且 3,5,7互质 (互质可以直接得到这三个数的最小公倍数)

    令x= n%3=2 , y= n%5=3 ,z= n%7=2
      使5×7×a被3除余1,有35×2=70,即a=2;
      使3×7×b被5除余1,用21×1=21,即b=1;
      使3×5×c被7除余1,用15×1=15,即c=1。
      那么n =(70×x+21×y+15×z)%lcm(3,5,7) = 23 这是n的最小解

    而韩信已知士兵人数在2300~2400之间,所以只需要n+i×lcm(3,5,7)就得到了2333,此时i=22


    同样,这道题的解法就是:

    已知(n+d)%23=p; (n+d)%28=e; (n+d)%33=i
      使33×28×a被23除余1,用33×28×8=5544;
      使23×33×b被28除余1,用23×33×19=14421;
      使23×28×c被33除余1,用23×28×2=1288。
      因此有(5544×p+14421×e+1288×i)% lcm(23,28,33) =n+d

    又23、28、33互质,即lcm(23,28,33)= 21252;
      所以有n=(5544×p+14421×e+1288×i-d)%21252


    本题所求的是最小整数解,避免n为负,因此最后结果为n= [n+21252]% 21252

    那么最终求解n的表达式就是:

    n=(5544*p+14421*e+1288*i-d+21252)%21252

    当问题被转化为一条数学式子时,你会发现它无比简单。。。。直接输出结果了。

    转载请注明:EXP 技术分享博客 » POJ1006 – Biorhythms

    喜欢 (0) 分享 (0)
    发表我的评论
    取消评论

    表情

    Hi,您需要填写昵称和邮箱!

    • 昵称 (必填)
    • 邮箱 (必填)
    • 网址